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1. Introduction

According to the AdS/CFT correspondence [1] the string theory in AdS5 × S5 should

be dual to the N = 4 super Yang-Mills (SYM) theory. The spectrum of certain string

states matches with the spectrum of dimensions of field theory operators in the SYM

theory [2, 3]. There has been a mounting evidence that the spectrum of AdS/CFT is

described by studying the multi-spin rotating string solutions in AdS5 × S5 [4, 5] and by

analyzing the Bethe equation for the diagonalization of the integrable spin chain in the

SYM theory [6 – 9]. The direct relation between both sides has been investigated at the

level of effective action [10, 11] and the direct equivalence between the Bethe equation for

the spin chain and the classical Bethe equation for the classical AdS5 × S5 string sigma

model has been shown from the view point of integrability [12, 13].

Recently, Hofman and Maldacena [14] have made a particular limit such that both

the spin chain and the string effectively become very long and constructed a rotating open

string solution in R × S2, namely, the giant magnon using the Nambu-Goto string action,

which is a particular case of the spiky string in R × S2 [15] that is the generalization of

the spiky string in AdS3 [16], and is identified with an elementary magnon excitation in

the long spin chain. The dispersion relation between energy and angular momentum J1 for

the giant magnon has been calculated to be equal to the strong ’t Hooft coupling limit of

the dispersion relation for the spin chain magnon that was derived by using the SU(2|2) ×
SU(2|2) supersymmetry with a novel central extension [17]. From the equivalence between

the string theory in R × S2 and the sine-Gordon theory [18, 19], the giant magnon has

been identified with the sine-Gordon soliton and the scattering phase of two magnons has

been computed to be in agreement with the strong ’t Hooft coupling limit of the conjecture

of [20].

Analyzing the pole of the two-particle S-matrix [21] and exploiting the equivalence

between the string theory in R×S3 and the complex sine-Gordon theory [22], the dispersion

relation for the two-charge dyonic giant magnon has been presented to be described in terms

of infinite J1 and finite J2 of angular momentum in an orthogonal plane. This two-spin
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giant magnon is interpreted as a bound state composed of J2 magnons. From the Polyakov

action the two-spin giant magnon solution has been constructed for the string theory on

R×S3 in the conformal gauge and the finite-size effects for the string theory on R×S2 in

the uniform gauge have been studied [23]. The dispersion relation for the two-spin giant

magnon has been also derived from the Nambu-Goto action in the static gauge and the

one-loop superstring correction to the known folded and circular two-spin string solutions

has been analyzed in taking the limit of infinite J1 with finite J2 [24].

For the string theory in the β-deformed AdS5 × S5 background the two-spin giant

magnon solution has been presented [25, 26]. Using the relation with the complex sine-

Gordon theory, a family of closed string solutions with two spins on R × S3 have been

constructed [27] such that they interpolate the rotating two-spin closed strings [4] and the

dyonic giant magnons.

Applying the dressing method [28] to the SO(6) vector model describing strings in

R × S5 the three-spin giant magnon solution specified by infinite J1 and finite J2 and J3

has been derived [29] as a state consisting of two superposed, noninteracting, two-charge

bound states, one with a fixed momentum π and the other with an opposite momentum

−π. There has been a construction of the multi-spin giant magnon solution with infinite

J1 and finite J2 = J3 [26]. From the Polyakov action for strings on R×S5 in the conformal

gauge the three-spin giant magnon solution in the SU(3) sector has been constructed [30]

by generalizing the Neumann-Rosochatius ansatz [31], where it is interpreted as a super-

position of the bound state of J2 magnons with a total momentum p2 and the bound state

of J3 magnons with a different total momentum p3. The S-matrix for bound states with

an arbitrary number of magnons in the SU(2) sector has been investigated in both string

and gauge theory sides [32].

In the SL(2) sector using the Nambu-Goto action for strings in AdS3 × S1 [24] and

that with NS-NS B field [33], the two-spin giant magnon solutions have been presented

in the static gauge. In order to take an attempt to extend the SL(2) sector to the larger

sector we will use the Polyakov action for strings in AdS3 × S3 in the conformal gauge to

construct a three-spin giant magnon with one angular momentum in AdS3 and two angular

momenta in S3. We will see that the two Virasoro constraints connect the two subsectors

SL(2) and SU(2) and make an important role to determine the form of the rotating open

string configuration. We will discuss a relation between a giant magnon solution on AdS2

and the sinh-Gordon soliton.

2. Three-spin giant magnons

We consider a three-spin giant magnon in AdS5 × S5 which has one spin S in AdS5 and

two spins J1 and J2 in S5. The relevant metric is that of AdS3 × S3 part of AdS5 × S5

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdϕ2 + dθ2 + cos2 θdφ2
1 + sin2 θdφ2

2, (2.1)

so that the Polyakov string action in the conformal gauge becomes

I = −
√

λ

4π

∫

dτdσ[− cosh2 ρ(t′2 − ṫ2) + ρ′2 − ρ̇2 + sinh2 ρ(ϕ′2 − ϕ̇2)
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+ θ′2 − θ̇2 + cos2 θ(φ′2
1 − φ̇2

1) + sin2 θ(φ′2
2 − φ̇2

2)], (2.2)

where the dot and prime denote the derivatives with respect to τ and σ which ranges from

−∞ to ∞. We make the ansatz for a rotating open string soliton

t = τ + h1(y), ρ = ρ(y), ϕ = ω(τ + h2(y)),

φ1 = τ + g1(y), θ = θ(y), φ2 = w(τ + g2(y)), (2.3)

where y = σ − vτ . The equations of motion for φ1, φ2 lead to

∂yg1 =
v

1 − v2
tan2 θ, ∂yg2 = − v

1 − v2
, (2.4)

which give the equation of motion for θ

(1 − v2)2∂2
yθ = sin θ cos θ

(

1 − w2 − v2

cos4 θ

)

. (2.5)

The first integral of (2.5) with an appropriate integration constant is obtained by

(1 − v2)2(∂yθ)2 = sin2 θ

(

1 − w2 − v2

cos2 θ

)

= (1 − w2) tan2 θ(α2 − sin2 θ) (2.6)

with α =
√

(1 − v2 − w2)/(1 − w2), whose solution is given by

sin θ =
α

cosh βy
, for −∞ < y < ∞, (2.7)

where β =
√

1 − v2 − w2/(1 − v2), 1 − v2 − w2 ≥ 0, 1 − w2 ≥ 0. The angle φ2 is also

expressed as φ2 = w(τ − vσ)/(1 − v2). These expressions were presented in [23] by using

the conformal gauge supplemented by the static choice t = τ for the Polyakov action of

strings in R × S3.

The equations of motion for t and ϕ are given by

∂y[(v + (1 − v2)∂yh1) cosh2 ρ] = 0,

∂y[(v + (1 − v2)∂yh2) sinh2 ρ] = 0, (2.8)

which generate two conservation laws

∂yh1 =
1

1 − v2

(

−v +
c1

cosh2 ρ

)

, ∂yh2 =
1

1 − v2

(

−v +
c2

sinh2 ρ

)

, (2.9)

where c1 and c2 are integration constants. We use the expressions in (2.9) to obtain the

equation of motion for ρ

(1 − v2)2∂2
yρ = − sinh ρ cosh ρ

[

ω2

(

1 − c2
2

sinh4 ρ

)

−
(

1 − c2
1

cosh4 ρ

)]

, (2.10)

which is compared with (2.5).
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We first express one constraint on the energy-momentum tensor of the system Tτσ in

terms of z = sin θ as

1

v
(1 − v∂yh1)∂yh1 cosh2 ρ + (∂yρ)2 − ω2

v
(1 − v∂yh2)∂yh2 sinh2 ρ

+(∂yθ)2 − 1

1 − v2

(

1 − v2

1 − v2

z2

1 − z2

)

z2 +
w2z2

(1 − v2)2
= 0, (2.11)

which combines with (2.6) to be

1

v
(1 − v∂yh1)∂yh1 cosh2 ρ + (∂yρ)2 − ω2

v
(1 − v∂yh2)∂yh2 sinh2 ρ = 0. (2.12)

The other constraint Tττ + Tσσ = 0 now reads

−[(1 − v∂yh1)
2 + (∂yh1)

2]
cosh2 ρ

1 + v2
+ (∂yρ)2 + ω2[(1 − v∂yh2)

2 + (∂yh2)
2]

sinh2 ρ

1 + v2
(2.13)

+(∂yθ)2 + (1 − z2)

[

1

1 + v2

(

1 − 2v2

1 − v2

z2

1 − z2

)

+
z4v2

(1 − v2)2(1 − z2)2

]

+
w2z2

(1 − v2)2
= 0,

which also turns out to be of the form

−[(1− v∂yh1)
2 +(∂yh1)

2]
cosh2 ρ

1 + v2
+(∂yρ)2 +ω2[(1− v∂yh2)

2 +(∂yh2)
2]

sinh2 ρ

1 + v2
+

1

1 + v2
= 0

(2.14)

owing to (2.6). We require that the equation (2.12) should be identically equal to (2.14).

Eliminating the (∂yρ)2 term in (2.12) and (2.14) by subtraction we have one relation

expressed in terms of ∂yh1 and ∂yh2. The substitution of (2.9) into this extracted relation

yields

c1 − ω2c2 = v. (2.15)

In what follows we will take a simple case c1 = v, c2 = 0. From (2.3) and (2.9) with

c1 = v we have
dt

dτ
=

cosh2 ρ − v2

(1 − v2) cosh2 ρ
> 0, (2.16)

which insures forward propagation in time. Thus the equations (2.12) and (2.14) become

the same expression

(1 − v2)2(∂yρ)2 = sinh2 ρ

(

1 − ω2 − v2

cosh2 ρ

)

= (1 − ω2) tanh2 ρ

(

sinh2 ρ +
1 − v2 − ω2

1 − ω2

)

, (2.17)

which is indeed the first integral of the equation of motion for ρ (2.10) and depends on the

two parameters v and ω in the form similar to (2.6). Since the 1 − ω2 ≤ 0 region is not

allowed in view of the expression (2.17), there are two parameter regions

A : 1 − v2 − ω2 ≤ 0, 1 − ω2 ≥ 0,

B : 1 − v2 − ω2 ≥ 0, 1 − ω2 ≥ 0, (2.18)
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which are also expressed as A: 0 ≤ 1 − ω2 ≤ v2 and B: v2 ≤ 1 − ω2.

For the region A the eq. (2.17) leads to

∂yρ = ±
√

1 − ω2

1 − v2
tanh ρ

√

sinh2 ρ − α̃2, α̃ =

√

v2 + ω2 − 1

1 − ω2
, (2.19)

which can be integrated as

1

α̃

√

sinh2 ρ − α̃2 =

{

tan β̃y, for 0 ≤ y ≤ π
2β̃

,

− tan β̃y, for - π
2β̃

≤ y ≤ 0
(2.20)

with β̃ =
√

v2 + ω2 − 1/(1−v2). This solution lies within a finite range of y and is expressed

as

sinh ρ =
α̃

cos β̃y
, for − π

2β̃
≤ y ≤ π

2β̃
. (2.21)

At the boundaries of range y = ± π
2β̃

the radial coordinate ρ extends to the infinity, and at

y = 0 it becomes the shortest value ρ0 = sinh−1 α̃, which is compared with the maximum

value θmax = sin−1 α at y = 0 for solution (2.7). In the region A we cannot make a ω = 0

reduction that corresponds to the string solution in AdS2 × S3, while the ω = 0 reduction

is possible in the region B.

For the region B through an appropriate integration constant the eq. (2.17) is similarly

integrated as

sinh ρ =

{

α̂
sinh β̂y

, for 0 ≤ y < ∞,

− α̂
sinh β̂y

, for −∞ < y ≤ 0,
(2.22)

where

α̂ =

√

1 − v2 − ω2

1 − ω2
, β̂ =

√
1 − v2 − ω2

1 − v2
. (2.23)

At y = 0 ρ extends infinitely to the boundary of AdS3, while at y = ±∞ ρ becomes zero

to reach the origin of AdS3. Since this solution is supported in the same infinite range

−∞ < y < ∞ as that for the solution (2.7), we will analyze the string solution in the

parameter region B, which describes an open string on a plane.

The rotating open string is characterized by the following energy and spins

E =

√
λ

2π

∫

dσ cosh2 ρ

(

1 +
v2

1 − v2
tanh2 ρ

)

,

J1 =

√
λ

2π

∫

dσ cos2 θ

(

1 − v2

1 − v2
tan2 θ

)

,

J2 =

√
λ

2π

w

1 − v2

∫

dσ sin2 θ,

S =

√
λ

2π

ω

1 − v2

∫

dσ sinh2 ρ, (2.24)

where J1, J2 and S are the spins associated with the φ1, φ2 and ϕ directions. They combine

to yield a relation

E − J1 =
S

ω
+

J2

w
. (2.25)
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When the solutions (2.22) and (2.7) are plugged into the respective expressions in (2.24)

we see that both E and J1 diverge owing to the effectively long open string configuration,

while the difference E−J1 has no such IR divergence but contains the UV divergence. The

solution (2.7) is used to rewrite the J2/w term in (2.25) as a finite value [23, 24]

J2

w
=

√

J2
2 +

λ

π2
α2, (2.26)

where α is characterized by an angle difference between the two endpoints of the open

string as

∆φ1 =

∫ ∞

−∞
dy∂yg1(y) = 2 cos−1

√

1 − α2, (2.27)

which is identified with the magnon momentum and yields α = sin ∆φ1

2 .

On the other hand the S spin contribution to the string energy is expressed through

(2.17) and the change of variable z = cosh ρ as

S

ω
=

√
λ

2π

2

1 − v2

∫ 0

∞
dρ

sinh2 ρ

∂yρ
=

√
λ

π

1√
1 − ω2

∫ ∞

1
dz

z
√

z2 − z2
0

, (2.28)

where z0 = v/
√

1 − ω2 and ∂yρ = −
√

1 − ω2 tanh ρ
√

sinh2 ρ + α̂2/(1 − v2) for 0 ≤ y < ∞.

However, this integration diverges because the rotating long string stretches to the bound-

ary of AdS3. By introducing a cutoff Λ to regulate the UV divergence we evaluate (2.28)

as
S

ω
=

√
λ

π

1√
1 − ω2

(Λ −
√

1 − z2
0). (2.29)

This divergence appeared when the giant magnon solution was derived by analyzing the

Nambu-Goto action in the static gauge for the string with two spins J1 and S in AdS3 ×
S1 [24]. Following the prescription of ref. [24] we subtract the divergent term to have a

regulated value

Sreg

ω
= −

√
λ

π

√

1 − z2
0

1 − ω2
, (2.30)

from which ω is obtained by

ω =
|Sreg|

√

S2
reg + λ

π2 (1 − z2
0)

. (2.31)

Combining (2.30) and (2.31) the S spin contribution is expressed as a magnon-like disper-

sion relation
Sreg

ω
= −

√

S2
reg +

λ

π2
α̂2, (2.32)

which resembles (2.26), where α̂ and α are similarly defined by using ω and w respectively.

Here the parameter α̂ is characterized by a time difference between the two endpoints of

the open string

∆t =

∫ ∞

−∞
dy∂yh1(y) = −2 tan−1

√
1 − α̂2

α̂
, (2.33)
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which reduces to α̂ = cos ∆t
2 . Thus we have a dispersion relation for the three-spin giant

magnon in AdS3 × S3

(E − J1)reg = −
√

S2
reg +

λ

π2
cos2

∆t

2
+

√

J2
2 +

λ

π2
sin2 ∆φ1

2
, (2.34)

which is regarded as the energy of a superposition of a bound state of J2 magnons with

momentum ∆φ1 and a bound state of |Sreg| magnons with momentum π + ∆t. Up to a

negative sign this dispersion relation has the similar structure to that for the giant magnon

with the three spins J1, J2, J3 in R × S5 [29, 30].

3. Giant magnons on AdS2 and sinh-Gordon solitons

Let us analyze the AdS3 part of the three-spin giant magnon configuration. The AdS3

space-time is parametrized by a complex two-component vector Yi = (Y0, Y1)

Y0 = cosh ρeit, Y1 = sinh ρeiϕ, (3.1)

which obeys Y ∗
i Y i = −1, Y i = ηijYj , with ηij = diag(−1, 1). Alternatively, a real four-

component vector

ni = (cosh ρ cos t, cosh ρ sin t, sinh ρ cos ϕ, sinh ρ sin ϕ) (3.2)

parametrizes the AdS3 space-time in such a way that nin
i = −1 and ni = ηijnj with the

flat R2,2 metric ηij = diag(−1,−1, 1, 1). The reduced Virasoro constraint (2.14) for the

string motion in AdS3 can be expressed in a compact form as

ṅiṅ
i + n′

in
′i = −1. (3.3)

Here in order to capture a fascinating feature of the giant magnon on AdS3 we try to

compute a combination

ṅiṅ
i − n′

in
′i = − cosh2 ρ(ṫ2 − t′2) + ρ̇2 − ρ′2 + sinh2 ρ(ϕ̇2 − ϕ′2). (3.4)

By substituting the solution (2.22) into the first equation in (2.9) and integrating it we

express the time coordinate t as

t − τ = h1 = − tan−1

(√
1 − α̂2

α̂
tanh β̂y

)

+ k, (3.5)

which reproduces (2.33). If the integration constant k is chosen to be zero, it is convenient

to express (3.5) as

cot(t − τ) = − α̂√
1 − α̂2

coth β̂y. (3.6)

The eq. (3.6) combines with (2.22) to yield

cosh ρ =

{
√

1−α̂2

sin(t−τ) , for 0 ≤ t − τ ≤ ĥ1 < π
2 (−∞ < y ≤ 0),

−
√

1−α̂2

sin(t−τ) , for -π
2 < −ĥ1 ≤ t − τ ≤ 0 (0 ≤ y < ∞),

(3.7)
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where ĥ1 = tan−1(
√

1 − α̂2/α̂). By substituting the derivatives of (2.22) and (3.6) with

respect to τ and σ into (3.4) and taking account of (3.7) and ∂yh2 = −v/(1 − v2) we find

a concise expression

ṅiṅ
i − n′

in
′i = −

(

1 +
2(1 − ω2)α̂2

1 − v2

1

sinh2 β̂y

)

. (3.8)

It can be checked that the constraint (3.3) is indeed satisfied by the explicit relations (3.6)

and (3.7). Alternatively, instead of the explicit relations we directly use (2.9) to ex-

press (3.4) as

ṅiṅ
i − n′

in
′i = − cosh2 ρ − 2v2

1 − v2
sinh2 ρ

+ (1 − v2)

[

v2

(1 − v2)2
sinh4 ρ

cosh2 ρ
− (∂yρ)2 +

ω2

(1 − v2)2
sinh2 ρ

]

, (3.9)

which reduces to (3.8) through the substitution of (2.22).

If we define a scalar field φ as

cosh 2φ = −(ṅiṅ
i − n′

in
′i), (3.10)

whose φ is real bcause of comparing cosh 2φ > 1 with (3.8), we obtain

sinh φ =

√

1 − v2 − ω2

1 − v2

1

sinh β̂y
. (3.11)

From the expression (3.11) the scalar field φ is shown to obey the following equation

∂2
yφ =

1

1 − v2

sinh φ

cosh3 φ

(

sinh4 φ + 2 sinh2 φ +
1 − v2 − ω2

1 − v2

)

. (3.12)

When considering a special ω = 0 case, that is, the giant magnon on AdS2, we have

sinh φ =
1

sinh y√
1−v2

(3.13)

and the eq. (3.12) implies that the scalar field φ satisfies the sinh-Gordon equation

(∂2
τ − ∂2

σ)2φ = − sinh 2φ. (3.14)

Thus we see that there is a relation between the giant magnon on AdS2 and the sinh-

Gordon soliton, which corresponds to the map between the giant magnon on S2 and the

sine-Gordon soliton [14].

Moreover, it is instructive to substitute the explicit solutions (2.22), (3.6) and (3.7)

with ϕ = ω(τ − vσ)/(1 − v2) into the complex coordinates Y0 and Y1 in (3.1) and then

obtain

Y0 = ±eiτ

[

i
√

1 − α̂2 − α̂ coth

(

β̂0
y√

1 − v2

)]

,

Y1 = ∓ α̂

sinh
(

β̂0
y√

1−v2

)ei
q

1−β̂2

0
(τ−vσ)/

√
1−v2

, β̂0 =

√

1 − v2 − ω2

1 − v2
, (3.15)
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whose signs correspond to −∞ < y ≤ 0 and 0 ≤ y < ∞ respectively. This expression for

the string solution in AdS3 looks similar to that expressed by the two complex coordinates

for the string solution in R × S3 corresponding to the dyonic giant magnon with two

independent angular momenta which was shown to be related with the charged soliton of

the complex sine-Gordon equation [22].

4. Conclusion

We have used the conformal gauge for the Polyakov action of strings in AdS3 × S3 to

construct the three-spin giant magnon solution with one spin in AdS3 and two spins in

S3. By taking advantage of the explicit expression for the giant magnon solution we have

demonstrated a mapping between the giant magnon on AdS2 and the sinh-Gordon soliton.

We have observed that the string configuration in S3 makes an effect on the string

motion in AdS3 indirectly through the two Virasoro constraints. From the Polyakov action

of strings in R × S3 in the conformal gauge the static choice t = τ was used [23] to

construct the two-spin giant magnon solution in the SU(2) sector, while for the three-

spin giant magnon in AdS3 × S3 this choice has not been allowed such that the string

time coordinate has a nontrivial dependence on the worldsheet coordinates τ and σ. The

arbitrary parameters c1 and c2 that characterize the time and angle coordinates of string

in AdS3 have been chosen so as to satisfy the two Virasoro constraints. By regularizing

the UV divergence arising from the configuration of the string stretched to the boundary

of AdS3, the dispersion relation of the three-spin giant magnon has been obtained as the

energy of a superposition of two bound states of magnons. In the SU(2) subsector one

bound state with J2 magnons has the total momentum which is given by the difference of

the angle coordinate that is associated with infinite spin J1, whereas in the SL(2) subsector

the other bound state with |Sreg| magnons has the total momentum which is specified by

the difference of the time coordinate that is associated with infinite energy E.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200];

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[2] D. Berenstein, J.M. Maldacena and H. Nastase, Strings in flat space and pp waves from

N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021].

[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string

correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051].

[4] S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS5 × S5,

JHEP 06 (2002) 007 [hep-th/0204226]; Multi-spin string solutions in AdS5 × S5, Nucl.

Phys. B 668 (2003) 77 [hep-th/0304255]; Quantizing three-spin string solution in

– 9 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://jhep.sissa.it/stdsearch?paper=04%282002%29013
http://arxiv.org/abs/hep-th/0202021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB636%2C99
http://arxiv.org/abs/hep-th/0204051
http://jhep.sissa.it/stdsearch?paper=06%282002%29007
http://arxiv.org/abs/hep-th/0204226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB668%2C77
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB668%2C77
http://arxiv.org/abs/hep-th/0304255


J
H
E
P
1
2
(
2
0
0
6
)
0
4
3

AdS5 × S5, JHEP 07 (2003) 016 [hep-th/0306130]; Rotating string solutions: AdS/CFT

duality in non-supersymmetric sectors, Phys. Lett. B 570 (2003) 96 [hep-th/0306143].

[5] A.A. Tseytlin, Spinning strings and AdS/CFT duality, hep-th/0311139.

[6] J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03

(2003) 013 [hep-th/0212208].

[7] N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super

Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060];

N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B

670 (2003) 439 [hep-th/0307042];

N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar N = 4

super Yang-Mills, JHEP 07 (2004) 075 [hep-th/0405001].

[8] N. Beisert, The dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys.

Rept. 405 (2005) 1 [hep-th/0407277];

J. Plefka, Spinning strings and integrable spin chains in the AdS/CFT correspondence,

hep-th/0507136.

[9] N. Beisert and M. Staudacher, Long-range PSU(2,2|4) Bethe ansätze for gauge theory and

strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190].

[10] M. Kruczenski, Spin chains and string theory, Phys. Rev. Lett. 93 (2004) 161602

[hep-th/0311203];

M. Kruczenski, A.V. Ryzhov and A.A. Tseytlin, Large spin limit of AdS5 × S5 string theory

and low energy expansion of ferromagnetic spin chains, Nucl. Phys. B 692 (2004) 3

[hep-th/0403120].

[11] A.A. Tseytlin, Semiclassical strings and AdS/CFT, hep-th/0409296.

[12] V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical / quantum

integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207];

N. Beisert, V.A. Kazakov and K. Sakai, Algebraic curve for the SO(6) sector of AdS/CFT,

Commun. Math. Phys. 263 (2006) 611 [hep-th/0410253];

N. Dorey and B. Vicedo, On the dynamics of finite-gap solutions in classical string theory,

JHEP 07 (2006) 014 [hep-th/0601194].

[13] K. Zarembo, Semiclassical Bethe ansatz and AdS/CFT, Comptes Rendus Physique 5 (2004)

1081–1090 [hep-th/0411191].

[14] D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095–13118

[hep-th/0604135].

[15] S. Ryang, Wound and rotating strings in AdS5 × S5, JHEP 08 (2005) 047 [hep-th/0503239].

[16] M. Kruczenski, Spiky strings and single trace operators in gauge theories, JHEP 08 (2005)

014 [hep-th/0410226].

[17] N. Beisert, The su(2|2) dynamic S-matrix, hep-th/0511082.

[18] K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints,

Commun. Math. Phys. 46 (1976) 207.

[19] A. Mikhailov, An action variable of the sine-Gordon model, J. Geom. Phys. 56 (2006) 2429

[hep-th/0504035]; A nonlocal Poisson bracket of the sine-Gordon model, hep-th/0511069.

– 10 –

http://jhep.sissa.it/stdsearch?paper=07%282003%29016
http://arxiv.org/abs/hep-th/0306130
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB570%2C96
http://arxiv.org/abs/hep-th/0306143
http://arxiv.org/abs/hep-th/0311139
http://jhep.sissa.it/stdsearch?paper=03%282003%29013
http://jhep.sissa.it/stdsearch?paper=03%282003%29013
http://arxiv.org/abs/hep-th/0212208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB664%2C131
http://arxiv.org/abs/hep-th/0303060
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB670%2C439
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB670%2C439
http://arxiv.org/abs/hep-th/0307042
http://jhep.sissa.it/stdsearch?paper=07%282004%29075
http://arxiv.org/abs/hep-th/0405001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C405%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C405%2C1
http://arxiv.org/abs/hep-th/0407277
http://arxiv.org/abs/hep-th/0507136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB727%2C1
http://arxiv.org/abs/hep-th/0504190
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C161602
http://arxiv.org/abs/hep-th/0311203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB692%2C3
http://arxiv.org/abs/hep-th/0403120
http://arxiv.org/abs/hep-th/0409296
http://jhep.sissa.it/stdsearch?paper=05%282004%29024
http://arxiv.org/abs/hep-th/0402207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C263%2C611
http://arxiv.org/abs/hep-th/0410253
http://jhep.sissa.it/stdsearch?paper=07%282006%29014
http://arxiv.org/abs/hep-th/0601194
http://arxiv.org/abs/hep-th/0411191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C1309
http://arxiv.org/abs/hep-th/0604135
http://jhep.sissa.it/stdsearch?paper=08%282005%29047
http://arxiv.org/abs/hep-th/0503239
http://jhep.sissa.it/stdsearch?paper=08%282005%29014
http://jhep.sissa.it/stdsearch?paper=08%282005%29014
http://arxiv.org/abs/hep-th/0410226
http://arxiv.org/abs/hep-th/0511082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C46%2C207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JGPHE%2C56%2C2429
http://arxiv.org/abs/hep-th/0504035
http://arxiv.org/abs/hep-th/0511069


J
H
E
P
1
2
(
2
0
0
6
)
0
4
3

[20] G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10

(2004) 016 [hep-th/0406256].

[21] N. Dorey, Magnon bound states and the AdS/CFT correspondence, J. Phys. A 39 (2006)

13119–13128 [hep-th/0604175].

[22] H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024

[hep-th/0605155].

[23] G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size effects from giant magnons,

hep-th/0606126.

[24] J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states,

JHEP 08 (2006) 049 [hep-th/0606145].

[25] C.-S. Chu, G. Georgiou and V.V. Khoze, Magnons, classical strings and beta-deformations,

JHEP 11 (2006) 093 [hep-th/0606220].

[26] N.P. Bobev and R.C. Rashkov, Multispin giant magnons, Phys. Rev. D 74 (2006) 046011

[hep-th/0607018].

[27] K. Okamura and R. Suzuki, A perspective on classical strings from complex sine-Gordon

solitons, hep-th/0609026.

[28] V.E. Zakharov and A.V. Mikhailov, Relativistically invariant two-dimensional models in field

theory integrable by the inverse problem technique, Sov. Phys. JETP 47 (1978) 1017; On the

integrability of classical spinor models in two-dimensional space-time, Commun. Math. Phys.

74 (1980) 21;

J.P. Harnad, Y. Saint Aubin and S. Shnider, Backlund transformations for nonlinear sigma

models with values in Riemannian symmetric spaces, Commun. Math. Phys. 92 (1984) 329.

[29] M. Spradlin and A. Volovich, Dressing the giant magnon, JHEP 10 (2006) 012

[hep-th/0607009].

[30] M. Kruczenski, J. Russo and A.A. Tseytlin, Spiky strings and giant magnons on S5, JHEP

10 (2006) 002 [hep-th/0607044].

[31] G. Arutyunov, J. Russo and A.A. Tseytlin, Spinning strings in AdS5 × S5: new integrable

system relations, Phys. Rev. D 69 (2004) 086009 [hep-th/0311004].

[32] H.-Y. Chen, N. Dorey and K. Okamura, On the scattering of magnon boundstates, JHEP 11

(2006) 035 [hep-th/0608047];

R. Roiban, Magnon bound-state scattering in gauge and string theory, hep-th/0608049.

[33] W.-H. Huang, Giant magnons under NS-NS and Melvin fields, hep-th/0607161.

– 11 –

http://jhep.sissa.it/stdsearch?paper=10%282004%29016
http://jhep.sissa.it/stdsearch?paper=10%282004%29016
http://arxiv.org/abs/hep-th/0406256
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C1311
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C1311
http://arxiv.org/abs/hep-th/0604175
http://jhep.sissa.it/stdsearch?paper=09%282006%29024
http://arxiv.org/abs/hep-th/0605155
http://arxiv.org/abs/hep-th/0606126
http://jhep.sissa.it/stdsearch?paper=08%282006%29049
http://arxiv.org/abs/hep-th/0606145
http://jhep.sissa.it/stdsearch?paper=11%282006%29093
http://arxiv.org/abs/hep-th/0606220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C046011
http://arxiv.org/abs/hep-th/0607018
http://arxiv.org/abs/hep-th/0609026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C47%2C1017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C74%2C21
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C74%2C21
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C92%2C329
http://jhep.sissa.it/stdsearch?paper=10%282006%29012
http://arxiv.org/abs/hep-th/0607009
http://jhep.sissa.it/stdsearch?paper=10%282006%29002
http://jhep.sissa.it/stdsearch?paper=10%282006%29002
http://arxiv.org/abs/hep-th/0607044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C086009
http://arxiv.org/abs/hep-th/0311004
http://jhep.sissa.it/stdsearch?paper=11%282006%29035
http://jhep.sissa.it/stdsearch?paper=11%282006%29035
http://arxiv.org/abs/hep-th/0608047
http://arxiv.org/abs/hep-th/0608049
http://arxiv.org/abs/hep-th/0607161

