Three-spin giant magnons in $\operatorname{Ad} S_{5} \times S^{5}$

Shijong Ryang

Department of Physics, Kyoto Prefectural University of Medicine
Taishogun, Kyoto 603-8334 Japan
E-mail: ryang@koto.kpu-m.ac.jp

Abstract: From the Polyakov string action using a conformal gauge we construct a threespin giant magnon solution describing a long open string in $A d S_{5} \times S^{5}$ which rotates both in two angular directions of S^{5} and in one angular direction of $A d S_{5}$. Through the Virasoro constraints the string motion in $A d S_{5}$ takes an effect from the string configuration in S^{5}. The dispersion relation of the soliton solution is obtained as a superposition of two bound states of magnons. We show that there is a correspondence between a special giant magnon in $A d S_{2}$ and the sinh-Gordon soliton.

Keywords: Bosonic Strings, Penrose limit and pp-wave background, AdS-CFT Correspondence.

Contents

1. Introduction 1
2. Three-spin giant magnons 2
3. Giant magnons on $A d S_{2}$ and sinh-Gordon solitons 7
4. Conclusion 9

1. Introduction

According to the AdS/CFT correspondence [1] the string theory in $A d S_{5} \times S^{5}$ should be dual to the $\mathcal{N}=4$ super Yang-Mills (SYM) theory. The spectrum of certain string states matches with the spectrum of dimensions of field theory operators in the SYM theory [2, 3]. There has been a mounting evidence that the spectrum of AdS/CFT is described by studying the multi-spin rotating string solutions in $\operatorname{AdS} S_{5} \times S^{5}$ [4, 5] and by analyzing the Bethe equation for the diagonalization of the integrable spin chain in the SYM theory [6-9]. The direct relation between both sides has been investigated at the level of effective action [10, 11] and the direct equivalence between the Bethe equation for the spin chain and the classical Bethe equation for the classical $A d S_{5} \times S^{5}$ string sigma model has been shown from the view point of integrability (12, 13].

Recently, Hofman and Maldacena [14] have made a particular limit such that both the spin chain and the string effectively become very long and constructed a rotating open string solution in $R \times S^{2}$, namely, the giant magnon using the Nambu-Goto string action, which is a particular case of the spiky string in $R \times S^{2}$ [15] that is the generalization of the spiky string in $A d S_{3}$ [16], and is identified with an elementary magnon excitation in the long spin chain. The dispersion relation between energy and angular momentum J_{1} for the giant magnon has been calculated to be equal to the strong 't Hooft coupling limit of the dispersion relation for the spin chain magnon that was derived by using the $\mathrm{SU}(2 \mid 2) \times$ $\operatorname{SU}(2 \mid 2)$ supersymmetry with a novel central extension [17]. From the equivalence between the string theory in $R \times S^{2}$ and the sine-Gordon theory [18, 19], the giant magnon has been identified with the sine-Gordon soliton and the scattering phase of two magnons has been computed to be in agreement with the strong 't Hooft coupling limit of the conjecture of 20 .

Analyzing the pole of the two-particle S-matrix [21] and exploiting the equivalence between the string theory in $R \times S^{3}$ and the complex sine-Gordon theory [22], the dispersion relation for the two-charge dyonic giant magnon has been presented to be described in terms of infinite J_{1} and finite J_{2} of angular momentum in an orthogonal plane. This two-spin
giant magnon is interpreted as a bound state composed of J_{2} magnons. From the Polyakov action the two-spin giant magnon solution has been constructed for the string theory on $R \times S^{3}$ in the conformal gauge and the finite-size effects for the string theory on $R \times S^{2}$ in the uniform gauge have been studied [23]. The dispersion relation for the two-spin giant magnon has been also derived from the Nambu-Goto action in the static gauge and the one-loop superstring correction to the known folded and circular two-spin string solutions has been analyzed in taking the limit of infinite J_{1} with finite J_{2} [24].

For the string theory in the β-deformed $A d S_{5} \times S^{5}$ background the two-spin giant magnon solution has been presented [25, 26]. Using the relation with the complex sineGordon theory, a family of closed string solutions with two spins on $R \times S^{3}$ have been constructed [27] such that they interpolate the rotating two-spin closed strings $\boxed{4}$ and the dyonic giant magnons.

Applying the dressing method 28 to the $\mathrm{SO}(6)$ vector model describing strings in $R \times S^{5}$ the three-spin giant magnon solution specified by infinite J_{1} and finite J_{2} and J_{3} has been derived 29] as a state consisting of two superposed, noninteracting, two-charge bound states, one with a fixed momentum π and the other with an opposite momentum $-\pi$. There has been a construction of the multi-spin giant magnon solution with infinite J_{1} and finite $J_{2}=J_{3}$ [26]. From the Polyakov action for strings on $R \times S^{5}$ in the conformal gauge the three-spin giant magnon solution in the $\mathrm{SU}(3)$ sector has been constructed 30 by generalizing the Neumann-Rosochatius ansatz [31], where it is interpreted as a superposition of the bound state of J_{2} magnons with a total momentum p_{2} and the bound state of J_{3} magnons with a different total momentum p_{3}. The S-matrix for bound states with an arbitrary number of magnons in the $\mathrm{SU}(2)$ sector has been investigated in both string and gauge theory sides 32.

In the $\mathrm{SL}(2)$ sector using the Nambu-Goto action for strings in $A d S_{3} \times S^{1}$ 24 and that with NS-NS B field [33], the two-spin giant magnon solutions have been presented in the static gauge. In order to take an attempt to extend the $\mathrm{SL}(2)$ sector to the larger sector we will use the Polyakov action for strings in $A d S_{3} \times S^{3}$ in the conformal gauge to construct a three-spin giant magnon with one angular momentum in $A d S_{3}$ and two angular momenta in S^{3}. We will see that the two Virasoro constraints connect the two subsectors $\mathrm{SL}(2)$ and $\mathrm{SU}(2)$ and make an important role to determine the form of the rotating open string configuration. We will discuss a relation between a giant magnon solution on $A d S_{2}$ and the sinh-Gordon soliton.

2. Three-spin giant magnons

We consider a three-spin giant magnon in $A d S_{5} \times S^{5}$ which has one spin S in $A d S_{5}$ and two spins J_{1} and J_{2} in S^{5}. The relevant metric is that of $A d S_{3} \times S^{3}$ part of $A d S_{5} \times S^{5}$

$$
\begin{equation*}
d s^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \varphi^{2}+d \theta^{2}+\cos ^{2} \theta d \phi_{1}^{2}+\sin ^{2} \theta d \phi_{2}^{2} \tag{2.1}
\end{equation*}
$$

so that the Polyakov string action in the conformal gauge becomes

$$
I=-\frac{\sqrt{\lambda}}{4 \pi} \int d \tau d \sigma\left[-\cosh ^{2} \rho\left(t^{\prime 2}-\dot{t}^{2}\right)+\rho^{\prime 2}-\dot{\rho}^{2}+\sinh ^{2} \rho\left(\varphi^{\prime 2}-\dot{\varphi}^{2}\right)\right.
$$

$$
\begin{equation*}
\left.+\theta^{\prime 2}-\dot{\theta}^{2}+\cos ^{2} \theta\left(\phi_{1}^{\prime 2}-\dot{\phi}_{1}^{2}\right)+\sin ^{2} \theta\left(\phi_{2}^{\prime 2}-\dot{\phi}_{2}^{2}\right)\right] \tag{2.2}
\end{equation*}
$$

where the dot and prime denote the derivatives with respect to τ and σ which ranges from $-\infty$ to ∞. We make the ansatz for a rotating open string soliton

$$
\begin{array}{rlrl}
t & =\tau+h_{1}(y), & & \rho=\rho(y), \\
& & \varphi=\omega\left(\tau+h_{2}(y)\right) \tag{2.3}\\
\phi_{1} & =\tau+g_{1}(y), & & \theta=\theta(y), \\
& \phi_{2}=w\left(\tau+g_{2}(y)\right)
\end{array}
$$

where $y=\sigma-v \tau$. The equations of motion for ϕ_{1}, ϕ_{2} lead to

$$
\begin{equation*}
\partial_{y} g_{1}=\frac{v}{1-v^{2}} \tan ^{2} \theta, \quad \partial_{y} g_{2}=-\frac{v}{1-v^{2}} \tag{2.4}
\end{equation*}
$$

which give the equation of motion for θ

$$
\begin{equation*}
\left(1-v^{2}\right)^{2} \partial_{y}^{2} \theta=\sin \theta \cos \theta\left(1-w^{2}-\frac{v^{2}}{\cos ^{4} \theta}\right) \tag{2.5}
\end{equation*}
$$

The first integral of (2.5) with an appropriate integration constant is obtained by

$$
\begin{align*}
\left(1-v^{2}\right)^{2}\left(\partial_{y} \theta\right)^{2} & =\sin ^{2} \theta\left(1-w^{2}-\frac{v^{2}}{\cos ^{2} \theta}\right) \\
& =\left(1-w^{2}\right) \tan ^{2} \theta\left(\alpha^{2}-\sin ^{2} \theta\right) \tag{2.6}
\end{align*}
$$

with $\alpha=\sqrt{\left(1-v^{2}-w^{2}\right) /\left(1-w^{2}\right)}$, whose solution is given by

$$
\begin{equation*}
\sin \theta=\frac{\alpha}{\cosh \beta y}, \quad \text { for }-\infty<y<\infty \tag{2.7}
\end{equation*}
$$

where $\beta=\sqrt{1-v^{2}-w^{2}} /\left(1-v^{2}\right), 1-v^{2}-w^{2} \geq 0,1-w^{2} \geq 0$. The angle ϕ_{2} is also expressed as $\phi_{2}=w(\tau-v \sigma) /\left(1-v^{2}\right)$. These expressions were presented in [23] by using the conformal gauge supplemented by the static choice $t=\tau$ for the Polyakov action of strings in $R \times S^{3}$.

The equations of motion for t and φ are given by

$$
\begin{align*}
\partial_{y}\left[\left(v+\left(1-v^{2}\right) \partial_{y} h_{1}\right) \cosh ^{2} \rho\right] & =0 \\
\partial_{y}\left[\left(v+\left(1-v^{2}\right) \partial_{y} h_{2}\right) \sinh ^{2} \rho\right] & =0 \tag{2.8}
\end{align*}
$$

which generate two conservation laws

$$
\begin{equation*}
\partial_{y} h_{1}=\frac{1}{1-v^{2}}\left(-v+\frac{c_{1}}{\cosh ^{2} \rho}\right), \quad \partial_{y} h_{2}=\frac{1}{1-v^{2}}\left(-v+\frac{c_{2}}{\sinh ^{2} \rho}\right) \tag{2.9}
\end{equation*}
$$

where c_{1} and c_{2} are integration constants. We use the expressions in (2.9) to obtain the equation of motion for ρ

$$
\begin{equation*}
\left(1-v^{2}\right)^{2} \partial_{y}^{2} \rho=-\sinh \rho \cosh \rho\left[\omega^{2}\left(1-\frac{c_{2}^{2}}{\sinh ^{4} \rho}\right)-\left(1-\frac{c_{1}^{2}}{\cosh ^{4} \rho}\right)\right] \tag{2.10}
\end{equation*}
$$

which is compared with (2.5).

We first express one constraint on the energy-momentum tensor of the system $T_{\tau \sigma}$ in terms of $z=\sin \theta$ as

$$
\begin{align*}
& \frac{1}{v}\left(1-v \partial_{y} h_{1}\right) \partial_{y} h_{1} \cosh ^{2} \rho+\left(\partial_{y} \rho\right)^{2}-\frac{\omega^{2}}{v}\left(1-v \partial_{y} h_{2}\right) \partial_{y} h_{2} \sinh ^{2} \rho \\
& \quad+\left(\partial_{y} \theta\right)^{2}-\frac{1}{1-v^{2}}\left(1-\frac{v^{2}}{1-v^{2}} \frac{z^{2}}{1-z^{2}}\right) z^{2}+\frac{w^{2} z^{2}}{\left(1-v^{2}\right)^{2}}=0 \tag{2.11}
\end{align*}
$$

which combines with (2.6) to be

$$
\begin{equation*}
\frac{1}{v}\left(1-v \partial_{y} h_{1}\right) \partial_{y} h_{1} \cosh ^{2} \rho+\left(\partial_{y} \rho\right)^{2}-\frac{\omega^{2}}{v}\left(1-v \partial_{y} h_{2}\right) \partial_{y} h_{2} \sinh ^{2} \rho=0 \tag{2.12}
\end{equation*}
$$

The other constraint $T_{\tau \tau}+T_{\sigma \sigma}=0$ now reads

$$
\begin{align*}
& -\left[\left(1-v \partial_{y} h_{1}\right)^{2}+\left(\partial_{y} h_{1}\right)^{2}\right] \frac{\cosh ^{2} \rho}{1+v^{2}}+\left(\partial_{y} \rho\right)^{2}+\omega^{2}\left[\left(1-v \partial_{y} h_{2}\right)^{2}+\left(\partial_{y} h_{2}\right)^{2}\right] \frac{\sinh ^{2} \rho}{1+v^{2}} \tag{2.13}\\
& +\left(\partial_{y} \theta\right)^{2}+\left(1-z^{2}\right)\left[\frac{1}{1+v^{2}}\left(1-\frac{2 v^{2}}{1-v^{2}} \frac{z^{2}}{1-z^{2}}\right)+\frac{z^{4} v^{2}}{\left(1-v^{2}\right)^{2}\left(1-z^{2}\right)^{2}}\right]+\frac{w^{2} z^{2}}{\left(1-v^{2}\right)^{2}}=0
\end{align*}
$$

which also turns out to be of the form
$-\left[\left(1-v \partial_{y} h_{1}\right)^{2}+\left(\partial_{y} h_{1}\right)^{2}\right] \frac{\cosh ^{2} \rho}{1+v^{2}}+\left(\partial_{y} \rho\right)^{2}+\omega^{2}\left[\left(1-v \partial_{y} h_{2}\right)^{2}+\left(\partial_{y} h_{2}\right)^{2}\right] \frac{\sinh ^{2} \rho}{1+v^{2}}+\frac{1}{1+v^{2}}=0$
owing to (2.6). We require that the equation (2.12) should be identically equal to (2.14). Eliminating the $\left(\partial_{y} \rho\right)^{2}$ term in (2.12) and (2.14) by subtraction we have one relation expressed in terms of $\partial_{y} h_{1}$ and $\partial_{y} h_{2}$. The substitution of (2.9) into this extracted relation yields

$$
\begin{equation*}
c_{1}-\omega^{2} c_{2}=v \tag{2.15}
\end{equation*}
$$

In what follows we will take a simple case $c_{1}=v, c_{2}=0$. From (2.3) and (2.9) with $c_{1}=v$ we have

$$
\begin{equation*}
\frac{d t}{d \tau}=\frac{\cosh ^{2} \rho-v^{2}}{\left(1-v^{2}\right) \cosh ^{2} \rho}>0 \tag{2.16}
\end{equation*}
$$

which insures forward propagation in time. Thus the equations (2.12) and (2.14) become the same expression

$$
\begin{align*}
\left(1-v^{2}\right)^{2}\left(\partial_{y} \rho\right)^{2} & =\sinh ^{2} \rho\left(1-\omega^{2}-\frac{v^{2}}{\cosh ^{2} \rho}\right) \\
& =\left(1-\omega^{2}\right) \tanh ^{2} \rho\left(\sinh ^{2} \rho+\frac{1-v^{2}-\omega^{2}}{1-\omega^{2}}\right) \tag{2.17}
\end{align*}
$$

which is indeed the first integral of the equation of motion for $\rho(2.10)$ and depends on the two parameters v and ω in the form similar to (2.6). Since the $1-\omega^{2} \leq 0$ region is not allowed in view of the expression (2.17), there are two parameter regions

$$
\begin{array}{ll}
\mathrm{A}: & 1-v^{2}-\omega^{2} \leq 0,1-\omega^{2} \geq 0 \\
\mathrm{~B}: & 1-v^{2}-\omega^{2} \geq 0,1-\omega^{2} \geq 0 \tag{2.18}
\end{array}
$$

which are also expressed as A: $0 \leq 1-\omega^{2} \leq v^{2}$ and B: $v^{2} \leq 1-\omega^{2}$.
For the region A the eq. (2.17) leads to

$$
\begin{equation*}
\partial_{y} \rho= \pm \frac{\sqrt{1-\omega^{2}}}{1-v^{2}} \tanh \rho \sqrt{\sinh ^{2} \rho-\tilde{\alpha}^{2}}, \quad \tilde{\alpha}=\sqrt{\frac{v^{2}+\omega^{2}-1}{1-\omega^{2}}} \tag{2.19}
\end{equation*}
$$

which can be integrated as

$$
\frac{1}{\tilde{\alpha}} \sqrt{\sinh ^{2} \rho-\tilde{\alpha}^{2}}=\left\{\begin{align*}
\tan \tilde{\beta} y, & \text { for } 0 \leq y \leq \frac{\pi}{2 \tilde{\beta}} \tag{2.20}\\
-\tan \tilde{\beta} y, & \text { for }-\frac{\pi}{2 \tilde{\beta}} \leq y \leq 0
\end{align*}\right.
$$

with $\tilde{\beta}=\sqrt{v^{2}+\omega^{2}-1} /\left(1-v^{2}\right)$. This solution lies within a finite range of y and is expressed as

$$
\begin{equation*}
\sinh \rho=\frac{\tilde{\alpha}}{\cos \tilde{\beta} y}, \quad \text { for }-\frac{\pi}{2 \tilde{\beta}} \leq y \leq \frac{\pi}{2 \tilde{\beta}} \tag{2.21}
\end{equation*}
$$

At the boundaries of range $y= \pm \frac{\pi}{2 \tilde{\beta}}$ the radial coordinate ρ extends to the infinity, and at $y=0$ it becomes the shortest value $\rho_{0}=\sinh ^{-1} \tilde{\alpha}$, which is compared with the maximum value $\theta_{\max }=\sin ^{-1} \alpha$ at $y=0$ for solution (2.7). In the region A we cannot make a $\omega=0$ reduction that corresponds to the string solution in $A d S_{2} \times S^{3}$, while the $\omega=0$ reduction is possible in the region B .

For the region B through an appropriate integration constant the eq. (2.17) is similarly integrated as

$$
\sinh \rho=\left\{\begin{align*}
\frac{\hat{\alpha}}{\sinh \hat{\beta} y}, & \text { for } 0 \leq y<\infty \tag{2.22}\\
-\frac{\hat{\alpha}}{\sinh \hat{\beta} y}, & \text { for }-\infty<y \leq 0
\end{align*}\right.
$$

where

$$
\begin{equation*}
\hat{\alpha}=\sqrt{\frac{1-v^{2}-\omega^{2}}{1-\omega^{2}}}, \quad \hat{\beta}=\frac{\sqrt{1-v^{2}-\omega^{2}}}{1-v^{2}} \tag{2.23}
\end{equation*}
$$

At $y=0 \rho$ extends infinitely to the boundary of $A d S_{3}$, while at $y= \pm \infty \rho$ becomes zero to reach the origin of $A d S_{3}$. Since this solution is supported in the same infinite range $-\infty<y<\infty$ as that for the solution (2.7), we will analyze the string solution in the parameter region B, which describes an open string on a plane.

The rotating open string is characterized by the following energy and spins

$$
\begin{align*}
E & =\frac{\sqrt{\lambda}}{2 \pi} \int d \sigma \cosh ^{2} \rho\left(1+\frac{v^{2}}{1-v^{2}} \tanh ^{2} \rho\right) \\
J_{1} & =\frac{\sqrt{\lambda}}{2 \pi} \int d \sigma \cos ^{2} \theta\left(1-\frac{v^{2}}{1-v^{2}} \tan ^{2} \theta\right) \\
J_{2} & =\frac{\sqrt{\lambda}}{2 \pi} \frac{w}{1-v^{2}} \int d \sigma \sin ^{2} \theta \\
S & =\frac{\sqrt{\lambda}}{2 \pi} \frac{\omega}{1-v^{2}} \int d \sigma \sinh ^{2} \rho \tag{2.24}
\end{align*}
$$

where J_{1}, J_{2} and S are the spins associated with the ϕ_{1}, ϕ_{2} and φ directions. They combine to yield a relation

$$
\begin{equation*}
E-J_{1}=\frac{S}{\omega}+\frac{J_{2}}{w} \tag{2.25}
\end{equation*}
$$

When the solutions (2.22) and (2.7) are plugged into the respective expressions in (2.24) we see that both E and J_{1} diverge owing to the effectively long open string configuration, while the difference $E-J_{1}$ has no such IR divergence but contains the UV divergence. The solution (2.7) is used to rewrite the J_{2} / w term in (2.25) as a finite value [23, 24]

$$
\begin{equation*}
\frac{J_{2}}{w}=\sqrt{J_{2}^{2}+\frac{\lambda}{\pi^{2}} \alpha^{2}} \tag{2.26}
\end{equation*}
$$

where α is characterized by an angle difference between the two endpoints of the open string as

$$
\begin{equation*}
\Delta \phi_{1}=\int_{-\infty}^{\infty} d y \partial_{y} g_{1}(y)=2 \cos ^{-1} \sqrt{1-\alpha^{2}} \tag{2.27}
\end{equation*}
$$

which is identified with the magnon momentum and yields $\alpha=\sin \frac{\Delta \phi_{1}}{2}$.
On the other hand the S spin contribution to the string energy is expressed through (2.17) and the change of variable $z=\cosh \rho$ as

$$
\begin{equation*}
\frac{S}{\omega}=\frac{\sqrt{\lambda}}{2 \pi} \frac{2}{1-v^{2}} \int_{\infty}^{0} d \rho \frac{\sinh ^{2} \rho}{\partial_{y} \rho}=\frac{\sqrt{\lambda}}{\pi} \frac{1}{\sqrt{1-\omega^{2}}} \int_{1}^{\infty} d z \frac{z}{\sqrt{z^{2}-z_{0}^{2}}} \tag{2.28}
\end{equation*}
$$

where $z_{0}=v / \sqrt{1-\omega^{2}}$ and $\partial_{y} \rho=-\sqrt{1-\omega^{2}} \tanh \rho \sqrt{\sinh ^{2} \rho+\hat{\alpha}^{2}} /\left(1-v^{2}\right)$ for $0 \leq y<\infty$. However, this integration diverges because the rotating long string stretches to the boundary of $A d S_{3}$. By introducing a cutoff Λ to regulate the UV divergence we evaluate (2.28) as

$$
\begin{equation*}
\frac{S}{\omega}=\frac{\sqrt{\lambda}}{\pi} \frac{1}{\sqrt{1-\omega^{2}}}\left(\Lambda-\sqrt{1-z_{0}^{2}}\right) \tag{2.29}
\end{equation*}
$$

This divergence appeared when the giant magnon solution was derived by analyzing the Nambu-Goto action in the static gauge for the string with two spins J_{1} and S in $A d S_{3} \times$ S^{1} [24. Following the prescription of ref. [24] we subtract the divergent term to have a regulated value

$$
\begin{equation*}
\frac{S_{\mathrm{reg}}}{\omega}=-\frac{\sqrt{\lambda}}{\pi} \sqrt{\frac{1-z_{0}^{2}}{1-\omega^{2}}} \tag{2.30}
\end{equation*}
$$

from which ω is obtained by

$$
\begin{equation*}
\omega=\frac{\left|S_{\mathrm{reg}}\right|}{\sqrt{S_{\mathrm{reg}}^{2}+\frac{\lambda}{\pi^{2}}\left(1-z_{0}^{2}\right)}} \tag{2.31}
\end{equation*}
$$

Combining (2.30) and (2.31) the S spin contribution is expressed as a magnon-like dispersion relation

$$
\begin{equation*}
\frac{S_{\mathrm{reg}}}{\omega}=-\sqrt{S_{\mathrm{reg}}^{2}+\frac{\lambda}{\pi^{2}} \hat{\alpha}^{2}} \tag{2.32}
\end{equation*}
$$

which resembles (2.26), where $\hat{\alpha}$ and α are similarly defined by using ω and w respectively. Here the parameter $\hat{\alpha}$ is characterized by a time difference between the two endpoints of the open string

$$
\begin{equation*}
\Delta t=\int_{-\infty}^{\infty} d y \partial_{y} h_{1}(y)=-2 \tan ^{-1} \frac{\sqrt{1-\hat{\alpha}^{2}}}{\hat{\alpha}} \tag{2.33}
\end{equation*}
$$

which reduces to $\hat{\alpha}=\cos \frac{\Delta t}{2}$. Thus we have a dispersion relation for the three-spin giant magnon in $A d S_{3} \times S^{3}$

$$
\begin{equation*}
\left(E-J_{1}\right)_{\mathrm{reg}}=-\sqrt{S_{\mathrm{reg}}^{2}+\frac{\lambda}{\pi^{2}} \cos ^{2} \frac{\Delta t}{2}}+\sqrt{J_{2}^{2}+\frac{\lambda}{\pi^{2}} \sin ^{2} \frac{\Delta \phi_{1}}{2}} \tag{2.34}
\end{equation*}
$$

which is regarded as the energy of a superposition of a bound state of J_{2} magnons with momentum $\Delta \phi_{1}$ and a bound state of $\left|S_{\text {reg }}\right|$ magnons with momentum $\pi+\Delta t$. Up to a negative sign this dispersion relation has the similar structure to that for the giant magnon with the three spins J_{1}, J_{2}, J_{3} in $R \times S^{5}$ [29, 30].

3. Giant magnons on $A d S_{2}$ and sinh-Gordon solitons

Let us analyze the $A d S_{3}$ part of the three-spin giant magnon configuration. The $A d S_{3}$ space-time is parametrized by a complex two-component vector $Y_{i}=\left(Y_{0}, Y_{1}\right)$

$$
\begin{equation*}
Y_{0}=\cosh \rho e^{i t}, \quad Y_{1}=\sinh \rho e^{i \varphi}, \tag{3.1}
\end{equation*}
$$

which obeys $Y_{i}^{*} Y^{i}=-1, Y^{i}=\eta^{i j} Y_{j}$, with $\eta^{i j}=\operatorname{diag}(-1,1)$. Alternatively, a real fourcomponent vector

$$
\begin{equation*}
n_{i}=(\cosh \rho \cos t, \cosh \rho \sin t, \sinh \rho \cos \varphi, \sinh \rho \sin \varphi) \tag{3.2}
\end{equation*}
$$

parametrizes the $A d S_{3}$ space-time in such a way that $n_{i} n^{i}=-1$ and $n^{i}=\eta^{i j} n_{j}$ with the flat $R^{2,2}$ metric $\eta^{i j}=\operatorname{diag}(-1,-1,1,1)$. The reduced Virasoro constraint (2.14) for the string motion in $A d S_{3}$ can be expressed in a compact form as

$$
\begin{equation*}
\dot{n}_{i} \dot{n}^{i}+n_{i}^{\prime} n^{\prime i}=-1 . \tag{3.3}
\end{equation*}
$$

Here in order to capture a fascinating feature of the giant magnon on $A d S_{3}$ we try to compute a combination

$$
\begin{equation*}
\dot{n}_{i} \dot{n}^{i}-n_{i}^{\prime} n^{\prime i}=-\cosh ^{2} \rho\left(\dot{t}^{2}-t^{\prime 2}\right)+\dot{\rho}^{2}-\rho^{\prime 2}+\sinh ^{2} \rho\left(\dot{\varphi}^{2}-\varphi^{\prime 2}\right) . \tag{3.4}
\end{equation*}
$$

By substituting the solution (2.22) into the first equation in (2.9) and integrating it we express the time coordinate t as

$$
\begin{equation*}
t-\tau=h_{1}=-\tan ^{-1}\left(\frac{\sqrt{1-\hat{\alpha}^{2}}}{\hat{\alpha}} \tanh \hat{\beta} y\right)+k, \tag{3.5}
\end{equation*}
$$

which reproduces (2.33). If the integration constant k is chosen to be zero, it is convenient to express (3.5) as

$$
\begin{equation*}
\cot (t-\tau)=-\frac{\hat{\alpha}}{\sqrt{1-\hat{\alpha}^{2}}} \operatorname{coth} \hat{\beta} y . \tag{3.6}
\end{equation*}
$$

The eq. (3.6) combines with (2.22) to yield

$$
\cosh \rho=\left\{\begin{align*}
\frac{\sqrt{1-\hat{\alpha}^{2}}}{\sin (t-\tau)}, & \text { for } 0 \leq t-\tau \leq \hat{h}_{1}<\frac{\pi}{2}(-\infty<y \leq 0), \tag{3.7}\\
-\frac{\sqrt{1-\hat{\alpha}^{2}}}{\sin (t-\tau)}, & \text { for }-\frac{\pi}{2}<-\hat{h}_{1} \leq t-\tau \leq 0(0 \leq y<\infty),
\end{align*}\right.
$$

where $\hat{h}_{1}=\tan ^{-1}\left(\sqrt{1-\hat{\alpha}^{2}} / \hat{\alpha}\right)$. By substituting the derivatives of (2.22) and (3.6) with respect to τ and σ into (3.4) and taking account of (3.7) and $\partial_{y} h_{2}=-v /\left(1-v^{2}\right)$ we find a concise expression

$$
\begin{equation*}
\dot{n}_{i} \dot{n}^{i}-n_{i}^{\prime} n^{\prime i}=-\left(1+\frac{2\left(1-\omega^{2}\right) \hat{\alpha}^{2}}{1-v^{2}} \frac{1}{\sinh ^{2} \hat{\beta} y}\right) . \tag{3.8}
\end{equation*}
$$

It can be checked that the constraint (3.3) is indeed satisfied by the explicit relations (3.6) and (3.7). Alternatively, instead of the explicit relations we directly use (2.9) to express (3.4) as

$$
\begin{align*}
\dot{n}_{i} \dot{n}^{i}-n_{i}^{\prime} n^{\prime i} & =-\cosh ^{2} \rho-\frac{2 v^{2}}{1-v^{2}} \sinh ^{2} \rho \\
& +\left(1-v^{2}\right)\left[\frac{v^{2}}{\left(1-v^{2}\right)^{2}} \frac{\sinh ^{4} \rho}{\cosh ^{2} \rho}-\left(\partial_{y} \rho\right)^{2}+\frac{\omega^{2}}{\left(1-v^{2}\right)^{2}} \sinh ^{2} \rho\right] \tag{3.9}
\end{align*}
$$

which reduces to (3.8) through the substitution of (2.22).
If we define a scalar field ϕ as

$$
\begin{equation*}
\cosh 2 \phi=-\left(\dot{n}_{i} \dot{n}^{i}-n_{i}^{\prime} n^{\prime i}\right) \tag{3.10}
\end{equation*}
$$

whose ϕ is real bcause of comparing $\cosh 2 \phi>1$ with (3.8), we obtain

$$
\begin{equation*}
\sinh \phi=\sqrt{\frac{1-v^{2}-\omega^{2}}{1-v^{2}}} \frac{1}{\sinh \hat{\beta} y} \tag{3.11}
\end{equation*}
$$

From the expression (3.11) the scalar field ϕ is shown to obey the following equation

$$
\begin{equation*}
\partial_{y}^{2} \phi=\frac{1}{1-v^{2}} \frac{\sinh \phi}{\cosh ^{3} \phi}\left(\sinh ^{4} \phi+2 \sinh ^{2} \phi+\frac{1-v^{2}-\omega^{2}}{1-v^{2}}\right) . \tag{3.12}
\end{equation*}
$$

When considering a special $\omega=0$ case, that is, the giant magnon on $A d S_{2}$, we have

$$
\begin{equation*}
\sinh \phi=\frac{1}{\sinh \frac{y}{\sqrt{1-v^{2}}}} \tag{3.13}
\end{equation*}
$$

and the eq. (3.12) implies that the scalar field ϕ satisfies the sinh-Gordon equation

$$
\begin{equation*}
\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) 2 \phi=-\sinh 2 \phi \tag{3.14}
\end{equation*}
$$

Thus we see that there is a relation between the giant magnon on $A d S_{2}$ and the sinhGordon soliton, which corresponds to the map between the giant magnon on S^{2} and the sine-Gordon soliton 14 .

Moreover, it is instructive to substitute the explicit solutions (2.22), (3.6) and (3.7) with $\varphi=\omega(\tau-v \sigma) /\left(1-v^{2}\right)$ into the complex coordinates Y_{0} and Y_{1} in (3.1) and then obtain

$$
\begin{align*}
& Y_{0}= \pm e^{i \tau}\left[i \sqrt{1-\hat{\alpha}^{2}}-\hat{\alpha} \operatorname{coth}\left(\hat{\beta}_{0} \frac{y}{\sqrt{1-v^{2}}}\right)\right] \\
& Y_{1}=\mp \frac{\hat{\alpha}}{\sinh \left(\hat{\beta}_{0} \frac{y}{\sqrt{1-v^{2}}}\right)} e^{i \sqrt{1-\hat{\beta}_{0}^{2}}(\tau-v \sigma) / \sqrt{1-v^{2}}}, \quad \hat{\beta}_{0}=\sqrt{\frac{1-v^{2}-\omega^{2}}{1-v^{2}}} \tag{3.15}
\end{align*}
$$

whose signs correspond to $-\infty<y \leq 0$ and $0 \leq y<\infty$ respectively. This expression for the string solution in $A d S_{3}$ looks similar to that expressed by the two complex coordinates for the string solution in $R \times S^{3}$ corresponding to the dyonic giant magnon with two independent angular momenta which was shown to be related with the charged soliton of the complex sine-Gordon equation 22].

4. Conclusion

We have used the conformal gauge for the Polyakov action of strings in $A d S_{3} \times S^{3}$ to construct the three-spin giant magnon solution with one spin in $A d S_{3}$ and two spins in S^{3}. By taking advantage of the explicit expression for the giant magnon solution we have demonstrated a mapping between the giant magnon on $A d S_{2}$ and the sinh-Gordon soliton.

We have observed that the string configuration in S^{3} makes an effect on the string motion in $A d S_{3}$ indirectly through the two Virasoro constraints. From the Polyakov action of strings in $R \times S^{3}$ in the conformal gauge the static choice $t=\tau$ was used [23] to construct the two-spin giant magnon solution in the $\mathrm{SU}(2)$ sector, while for the threespin giant magnon in $A d S_{3} \times S^{3}$ this choice has not been allowed such that the string time coordinate has a nontrivial dependence on the worldsheet coordinates τ and σ. The arbitrary parameters c_{1} and c_{2} that characterize the time and angle coordinates of string in $A d S_{3}$ have been chosen so as to satisfy the two Virasoro constraints. By regularizing the UV divergence arising from the configuration of the string stretched to the boundary of $A d S_{3}$, the dispersion relation of the three-spin giant magnon has been obtained as the energy of a superposition of two bound states of magnons. In the $\mathrm{SU}(2)$ subsector one bound state with J_{2} magnons has the total momentum which is given by the difference of the angle coordinate that is associated with infinite spin J_{1}, whereas in the $\mathrm{SL}(2)$ subsector the other bound state with $\left|S_{\text {reg }}\right|$ magnons has the total momentum which is specified by the difference of the time coordinate that is associated with infinite energy E.

References

[1] J.M. Maldacena, The large- N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 hep-th/9711200;
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 hep-th/9802109;
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 hep-th/9802150.
[2] D. Berenstein, J.M. Maldacena and H. Nastase, Strings in flat space and pp waves from $N=4$ super Yang-Mills, JHEP 04 (2002) 013 hep-th/0202021.
[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 hep-th/0204051.
[4] S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in $\operatorname{Ad} S_{5} \times S^{5}$, JHEP 06 (2002) 007 hep-th/0204226; Multi-spin string solutions in $A d S_{5} \times S^{5}$, Nucl. Phys. B 668 (2003) 77 hep-th/0304255]; Quantizing three-spin string solution in
$A d S_{5} \times S^{5}$, JHEP 07 (2003) 016 hep-th/0306130; Rotating string solutions: AdS/CFT duality in non-supersymmetric sectors, Phys. Lett. B 570 (2003) 96 hep-th/0306143.
[5] A.A. Tseytlin, Spinning strings and AdS/CFT duality, hep-th/0311139.
[6] J.A. Minahan and K. Zarembo, The Bethe-ansatz for $N=4$ super Yang-Mills, JHEP 03 (2003) 013 hep-th/0212208.
[7] N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of $N=4$ super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 hep-th/0303060;
N. Beisert and M. Staudacher, The N=4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 hep-th/0307042;
N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar $N=4$ super Yang-Mills, JHEP 07 (2004) 075 hep-th/0405001.
[8] N. Beisert, The dilatation operator of $N=4$ super Yang-Mills theory and integrability, Phys. Rept. 405 (2005) 1 hep-th/0407277;
J. Plefka, Spinning strings and integrable spin chains in the AdS/CFT correspondence, hep-th/0507136.
[9] N. Beisert and M. Staudacher, Long-range PSU(2,2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 hep-th/0504190.
[10] M. Kruczenski, Spin chains and string theory, Phys. Rev. Lett. 93 (2004) 161602 hep-th/0311203;
M. Kruczenski, A.V. Ryzhov and A.A. Tseytlin, Large spin limit of $\operatorname{AdS} S_{5} \times S^{5}$ string theory and low energy expansion of ferromagnetic spin chains, Nucl. Phys. B 692 (2004) 3 hep-th/0403120.
[11] A.A. Tseytlin, Semiclassical strings and AdS/CFT, hep-th/0409296.
[12] V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical / quantum integrability in AdS/CFT, JHEP 05 (2004) 024 hep-th/0402207;
N. Beisert, V.A. Kazakov and K. Sakai, Algebraic curve for the $S O$ (6) sector of AdS/CFT, Commun. Math. Phys. 263 (2006) 611 hep-th/0410253;
N. Dorey and B. Vicedo, On the dynamics of finite-gap solutions in classical string theory, JHEP 07 (2006) 014 hep-th/0601194.
[13] K. Zarembo, Semiclassical Bethe ansatz and AdS/CFT, Comptes Rendus Physique 5 (2004) 1081-1090 hep-th/0411191.
[14] D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095-13118 hep-th/0604135.
[15] S. Ryang, Wound and rotating strings in $A d S_{5} \times S^{5}$, JHEP 08 (2005) 047 hep-th/0503239.
[16] M. Kruczenski, Spiky strings and single trace operators in gauge theories, JHEP 08 (2005) 014 hep-th/0410226.
[17] N. Beisert, The su(2|2) dynamic S-matrix, hep-th/0511082.
[18] K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys. 46 (1976) 207.
[19] A. Mikhailov, An action variable of the sine-Gordon model, J. Geom. Phys. 56 (2006) 2429 hep-th/0504035; A nonlocal Poisson bracket of the sine-Gordon model, hep-th/0511069.
[20] G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 hep-th/0406256.
[21] N. Dorey, Magnon bound states and the AdS/CFT correspondence, J. Phys. A 39 (2006) 13119-13128 hep-th/0604175.
[22] H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024 hep-th/0605155.
[23] G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size effects from giant magnons, hep-th/0606126.
[24] J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states, JHEP 08 (2006) 049 hep-th/0606145.
[25] C.-S. Chu, G. Georgiou and V.V. Khoze, Magnons, classical strings and beta-deformations, JHEP 11 (2006) 093 hep-th/0606220.
[26] N.P. Bobev and R.C. Rashkov, Multispin giant magnons, Phys. Rev. D 74 (2006) 046011 hep-th/0607018.
[27] K. Okamura and R. Suzuki, A perspective on classical strings from complex sine-Gordon solitons, hep-th/0609026.
[28] V.E. Zakharov and A.V. Mikhailov, Relativistically invariant two-dimensional models in field theory integrable by the inverse problem technique, Sov. Phys. JETP 47 (1978) 1017; On the integrability of classical spinor models in two-dimensional space-time, Commun. Math. Phys. 74 (1980) 21;
J.P. Harnad, Y. Saint Aubin and S. Shnider, Backlund transformations for nonlinear sigma models with values in Riemannian symmetric spaces, Commun. Math. Phys. 92 (1984) 329.
[29] M. Spradlin and A. Volovich, Dressing the giant magnon, JHEP 10 (2006) 012 hep-th/0607009.
[30] M. Kruczenski, J. Russo and A.A. Tseytlin, Spiky strings and giant magnons on S^{5}, JHEP 10 (2006) 002 hep-th/0607044.
[31] G. Arutyunov, J. Russo and A.A. Tseytlin, Spinning strings in $A d S_{5} \times S^{5}$: new integrable system relations, Phys. Rev. D 69 (2004) 086009 hep-th/0311004.
[32] H.-Y. Chen, N. Dorey and K. Okamura, On the scattering of magnon boundstates, JHEP 11 (2006) 035 hep-th/0608047;
R. Roiban, Magnon bound-state scattering in gauge and string theory, hep-th/0608049.
[33] W.-H. Huang, Giant magnons under NS-NS and Melvin fields, hep-th/0607161.

